
Deciphering the Performance of Satellite UPF:
Measurement and Enhancement

Yupeng Fu*‡1, Jianing Si*‡2, Xiao Ma‡*3, Yuanzhe Li†4, Yiran Zhang*5

*Beijing University of Posts and Telecommunications, †Tsinghua University, Beijing, China
‡Beiyou Shenzhen Institute, Shenzhen, China

1fyp@bupt.edu.cn, 2sijianing@bupt.edu.cn, 3maxiao18@bupt.edu.cn
4liyuanzhe@air.tsinghua.edu.cn, 5yiranzhang@bupt.edu.cn

Abstract—User Plane Function (UPF), with the functions of
local data dispatching, traffic management, and session anchor-
ing, is a key facilitating component in core network and a critical
enabling component in integration of communication and compu-
tation for future space computing power network (Space-CPN).
With the rapid evolution of communications technology and
Low Earth Orbit (LEO) satellites, both industry and academia
are devoting efforts to exploring the necessity and feasibility of
deploying 5G core network functions on LEO satellites. However,
no prior work has studied in depth the performance of UPF
in the space environment, especially the deployment of UPF on
resource-constrained LEO satellites. This work presents the first
measurement study on onboard UPF, revealing the main factor
influencing the performance of onboard UPF and identifying
the underlying bottleneck restricting throughput. Inspired by
the key findings, this work further designs a high performance
5G UPF architecture for LEO satellites. Evaluation results have
validated the effectiveness of the proposed design in improving
the performance of onboard UPF.

Index Terms—5G, LEO satellite, UPF, Measurement

I. INTRODUCTION

As 5G technology progresses towards commercialization,
there is a surging demand for Enhanced Mobile Broadband
(eMBB) and Ultra Reliable Low Latency Communications
(URLLC) applications, such as 4K/8K video streaming [1]
and cloud gaming [2]. These applications require networks
to achieve extremely high bandwidth and low latency, ne-
cessitating User Plane Functions (UPFs) to enforce consid-
erably high performance in data handling and transmission.
In 5G networks, UPF performs the functions of local data
dispatch, traffic management, and session anchoring, making
it a key facilitating component of the core network and
enabling the integration of communication and computation
(e.g. edge computing) in 5G [3]. Current 5G infrastructure
is primarily deployed in densely populated terrestrial regions,
leaving suburban, remote, and other non-terrestrial areas such
as maritime and aerial zones not sufficiently covered. The
forthcoming 6G paradigm is envisioned to integrate terrestrial,
aerial, and space networks (forming a space-air-terrestrial
integrated architecture), and to support integration of commu-
nication and computation capabilities in space networks (i.e.,
space computing power network, Space-CPN). To realize the
visions of the 6G paradigm, deploying UPF on satellites and
enhancing the performance of satellite UPF is one of the key
researching topics.

Deploying UPF on satellites is beneficial for Space-CPN for
two reasons. First, as the anchor for user plane data forwarding
(i.e., PDU Session Anchor), deploying UPF on satellites is
conducive to directly provision computing services on satel-
lites without experiencing satellite-ground data transmission,
thus lowering the delay of space computing. Secondly, deploy-
ing UPF on satellite can distribute traffic between the satellite
and the terrestrial network (UPF with UP-link Classifier),
the space-native data traffic can be dispatched to satellite
computing devices, which can significantly help relieve the
burden of the costly and resource-scarce satellite-terrestrial
links. Yet, deploying UPF on satellites and enhancing the
performance of satellite UPF is far from well investigated.

Industry and academia are actively promoting and investi-
gating the necessaries and feasibility of deploying 5G core
network functions on LEO satellites. The 3rd generation part-
nership project (3GPP) is extending 5G (and beyond) to LEO
constellations and includes the scenario of UPF deployment on
satellites in standardizations, such as 3GPP R18 [4]–[6]. The
National Aeronautics and Space Administration (NASA) has
deployed a spaceborne core network to validate the potential of
5G capabilities on satellites [7]. Operators and infrastructure
vendors have conducted experiments by hosting core network
functions on LEO satellites [8], [9]. Researchers have also
implemented experiments and emulations to study the feasi-
bility of deploying 5G core network on satellites [10] and
demonstrate the advantages of satellites as part of transmission
networks [11]. The problem of signaling storms in the satellite
core network has been pointed out and a stateless design for
the satellite core network prototype has been developed [12].

Despite of the extensive efforts devoted to the integration of
5G core network with satellites, they mostly did not study in
depth the performance of satellite core network quantitatively,
especially for satellite UPF which has been under standard-
ization. As indicated by the measurement study on satellite
computing, the capability of onboard computing is signifi-
cantly influenced by factors including temperature, energy, and
resource capacities [13]. These findings suggest the importance
of conducting a similar study on onboard UPF performance. To
this end, this study presents the first-of-its-kind measurement
study on onboard UPF. A simulation platform of satellite core
network has been constructed on a one-to-one scale, with
two servers simulating user access network and control plane,



and four Raspberry Pis performing the functions of UPF and
data network. The results demonstrate that temperature notably
surpasses energy and resource limitations as the primary
determinant of onboard UPF performance. Additionally, it is
also identified that Vanilla UPF (Free5GC) implementations
with kernel data handling are bottlenecked by frequent CPU
interruptions and extensive memory operations when deployed
on lightweight satellite computing equipment (e.g., Raspberry
Pi), which considerably undermines network throughput.

Motivated by the above findings, we further propose a xdp-
based UPF design for Raspberry Pi (i.e., XupfPI) to enhance
the performance of satellite UPF. The measurement results
indicate that enhancing satellite UPF performance necessi-
tates minimizing transitions between user and kernel modes.
Inspired by this finding, we propose an onboard adaptation
of UPF functionalities designated for a satellite payload en-
vironment. To adapt to resource-restricted environments, we
redesign the network address translation functionalities of the
protocol stack. In specific, we employ direct addressing tech-
niques for optimizing the data packet processing trajectory and
leverage pointer offset matching for the segmented retrieval of
crucial information, facilitating routing decisions. This design
can accelerate the modification of field positions and eliminate
the need for data packet duplication, which thereby can well
support high network throughput. Experimental validations
confirm that our proposed solution significantly enhances the
network performance of onboard UPF systems.

Our main contributions can be summarized as follows:
• This work presents the first-of-its-kind measurement

study on onboard UPF. The results demonstrate that
temperature is the main factor limiting the performance
of onboard UPF. Additionally, it is also identified that
frequent CPU interruptions and extensive memory oper-
ations considerably undermines network throughput.

• Inspired by the key findings of the measurement, this
work designs a high performance 5G UPF for the LEO
satellite. The ability to directly process network card
packets within the kernel expedites packet handling,
minimizing the overhead of kernel-user mode transitions.

• The evaluation results have demonstrated the effective-
ness of the proposed design in improving the performance
of onboard UPF.

II. RELATED WORK

Satellite Performance Measurement. The measurement
study on onboard computing [13] highlighted the significant
influence of temperature, power consumption, and resource
constraints on computational efficiency. The work [14] mea-
sured the performance of the Starlink system from the perspec-
tive of ordinary end users, revealing that the service quality of
Starlink users is more susceptible to environmental conditions.
Moreover, many research initiatives have been dedicated to the
empirical examination of satellite systems, aiming to find out
the determinants influencing satellite performance [15].

UPF Acceleration Research. UPF is identified as a piv-
otal component within the user plane, where its capability

to deliver high throughput and minimal latency services is
contingent upon its performance. Strategies to enhance UPF
performance are diverse, which are mainly summarized into
the following three categories: (1) using P4 programmable
hardware to achieve performance acceleration [16]; (2) using
DPDK acceleration framework to improve packet processing
[17], [18]; (3) using XDP technology to achieve performance
acceleration [19].

III. BACKGROUND

5G Core Network. The 5G core network architecture
employs a separation of the control plane and the user plane
[20], as is depicted in Fig. 1. UPF is essential for achieving
low latency and high bandwidth, as discussed by [16]. Fig.
1 illustrates the UPF’s functionality as an Intermediate UPF
(I-UPF) when situated amongst multiple Protocol Data Unit
(PDU) session anchors. In this capacity, the UPF serves as a
Uplink Classifier (UL-CL) and a branching point to facilitate
multi-homed PDU sessions, directing traffic to specific Data
Networks (DNs) based on traffic matching filters. UPF is a
critical component in the routing and forwarding of user plane
data within the 5G core network system. The operational work-
flow of UPF data packet forwarding predominantly involves
the Packet Forwarding Control Protocol (PFCP). Initially, the
User Equipment (UE) requests PDU session establishment,
prompting the Access and Mobility Management Function
(AMF) to designate an appropriate SMF for session man-
agement, based on the specifics of the request. For a UE
that seeks to build a session to the data network, its packets
should be transmitted through a UPF which is selected by the
SMF. Communication between SMF and UPF is facilitated via
the PFCP through the N4 interface, where the SMF directs
UPF packet forwarding operations by issuing a PFCP Session
Establishment request. Upon successful establishment, a PFCP
Session Context is generated within the UPF which stores
the UE’s identity, Packet Detection Rules (PDR), Forwarding
Action Rules (FAR), and other information. The forwarding
of user plane data packets is executed in accordance with this
context.

Fig. 1: 5G system architecture.

Temperature and Power on Satellites. The complex
and harsh satellite environment poses severe challenges to
the stable operation of Commercial Off-The-Shelf (COTS)
equipment. The study [13] presented the first measurement
study on the thermal control, power management, and perfor-
mance of COTS devices on satellites. The findings emphasize
the critical role of temperature and power consumption as



Fig. 2: Power-Temperature Curve between satellite platform
and simulation platform.

primary constraints that markedly restrict the capacity of
the computational workload and the operational duration of
onboard COTS devices. Specifically, it was demonstrated that
sustained operation of the Atlas 200 DK under maximum load
causes adverse effects on the satellite’s surface temperature
and battery longevity. Conversely, Raspberry Pi with low
power consumption causes a comparatively minimal impact
on satellite systems, highlighting the importance of power
efficiency in the selection of COTS devices for space missions.

IV. PERFORMANCE MEASUREMENT

This section studies the performance constraints of satellite
core networks, highlighting the complexities introduced by the
space environment.

A. Setup and Methodology

We constructed a terrestrial simulation platform (see Fig.3)
that mirrors the architecture of COTS equipment within satel-
lite frameworks on a one-to-one scale. Using empirical data
from the satellite platform [13], we emulated the environmen-
tal conditions and computational capabilities characteristic of
the onboard systems. As illustrated in Fig.2, we accurately
simulated the thermal dissipation and power performance of
low-power devices in the true space environment through a
series of advanced physical thermal isolation methods. The
instrumentation comprises two Intel NUC 11th Generation In-
tel® Core™ i5-1135G7 @ 2.40GHz servers operating Ubuntu
22.04 with kernel version 5.15.0-67-generic. One server is
dedicated to hosting the network functions of the Free5GC
control plane, while the other facilitates UERANSIM [21],
an open-source User Equipment and Radio Access Network
simulator. Additionally, the setup includes four Raspberry
Pi 4Bs, each with 8GiB RAM. Three serve as UPF and
one as a Data Network. We conducted three parallel sets
of identical experiments to ensure the generalizability of the
experimental results. Measures were taken to ensure that the
initial temperature discrepancy of each experimental iteration
remained below 2°C. The room and Raspberry Pi standby
temperatures for these experiments were maintained at 27°C
and 50°C, respectively.

Our methodology primarily employs Prometheus Exporter
and iPerf2 (UDP) for the acquisition of UPF metrics, encom-
passing temperature, power consumption, CPU utilization, and
packet loss rate. To ensure reliability and stability, each set of

Fig. 3: Overview of the simulation platform.

Fig. 4: Correlation between
bandwidth and temperature.

Fig. 5: Correlation between
bandwidth and resource.

experiments was repeated for 10 times and the measurement
duration was uniform.

B. Key Findings

1) Temperature is the Main Factor Limiting the Perfor-
mance of Onboard UPF: Experiments show that the bottle-
neck of the Raspberry Pi onboard is temperature rather than
power consumption. The Raspberry Pi consumes about 5W
at full load, and there is little difference between ground and
space [13]. The total capacity of the satellite battery is 230Wh.
This is significantly more than the needs of the Raspberry
Pi. Fig.4 illustrates that the high transmission bandwidth may
cause the Raspberry Pi to overheat, thus causing irreversible
hardware damage.

We examined CPU and memory utilization to determine the
cause of temperature elevation. Fig.5 reveals a proportional
increase in both CPU and memory utilization with increasing
bandwidth, with CPU utilization demonstrably more affected.
This pattern indicates that a higher data transfer bandwidth
precipitates increased CPU utilization, which then increases
temperature levels. Upon surpassing a predefined temperature
threshold, the Raspberry Pi engages the Dynamic Voltage and
Frequency Scaling (DVFS) mechanism, decrementing oper-
ational frequency to mitigate heat accumulation, potentially
impairing network performance.

Further exploration reveals a critical insight: the total trans-
mission bandwidth significantly impacts system temperature,
overshadowing the effects of session quantity or bandwidth
allocation. This conclusion is supported by two principal
observations:

• Session quantity: Investigating a scenario with a
20Mbps transmission bandwidth evenly distributed across
varying numbers of sessions, from a solitary session to
as many as 500, preliminary data (illustrated in Fig.6a)



(a) Session quantity (b) Bandwidth allocation

Fig. 6: Impact of session quantity and bandwidth allocation
on temperature.

(a) 20Mbps (b) 40Mbps

(c) 50Mbps (d) 60Mbps

Fig. 7: Correlation between packet loss rate and bandwidth in
Vanilla UPF.

indicate that the system’s temperature remains stable
across different session counts.

• Bandwidth allocation: In examining the impact of
bandwidth distribution within the 20Mbps transmission
bandwidth, experiments were carried out adjusting the
bandwidth allocation from 100% (single session using the
entire bandwidth) to 0% (bandwidth uniformly distributed
between 100 sessions). We can see from Fig.6b that min-
imal temperature variations irrespective of the bandwidth
distribution strategy, given a constant total bandwidth.

2) High Load Induces Significant Packet Loss in Vanilla
UPF: Experiments show that under the same measurement
duration, the increase of data transmission bandwidth has less
impact on the delay, but leads to higher packet loss. As shown
in Fig.7, Vanilla UPF experiences significant packet loss at
60Mbps, adversely affecting core network functionality and
service quality.

Initially, temperature was hypothesized to be a principal
factor contributing to packet loss. However, experiments under
various thermal conditions revealed minimal reduction in
packet loss rates with a decrease in temperature, as illustrated
in Fig.8. To find out the primary cause of packet loss, a
sequence of controlled experiments was undertaken, including
kernel adjustments, driver updates, and alterations to the oper-
ating system, yet these investigations yielded no significant

Fig. 8: Correlation between
temperature and packet loss
rate.

Fig. 9: The impact of frequent
memory access on packet loss
rate.

discoveries. A fortuitous insight emerged through the use
of Stress-ng, indicating that competition for memory access
could impair packet processing efficiency, especially under
high-frequency memory utilization conditions. Comparative
analyses conducted between frequent versus sparse memory
access scenarios, as shown in Fig.9, identified a pronounced
increase in packet loss rate under frequent memory access con-
ditions. This emphasizes the influence of memory access pat-
terns on network performance. Subsequent validation through
Sysbench confirmed memory bandwidth as the predominant
factor impacting network performance disparities.

C. Key Insights

The results of our measurement emphasize a pivotal consid-
eration for the design and optimization of UPF: data transmis-
sion mechanisms that rely on kernel intervention induce extra
interrupts and memory copy overheads. Consequently, when
designing UPF, the processing method of data packets should
be fully considered, and the kernel should be avoided as much
as possible.

V. DESIGN AND IMPLEMENTATION

A. Design

The system is designed to provide the best network quality
of service with the normal operation of the satellite core
network. As detailed in section IV, packets processed through
the Linux kernel’s network protocol stack will not only re-
sult in additional packet loss but also cause an increase in
satellite temperature. When the core network is overloaded,
performance is severely impaired. To address these challenges,
this paper proposes a novel protocol stack independent data
packet parsing mode suitable for satellite scenarios. Using
centralized management concepts, we devised an efficient
UPF routing component called XupfPI. This component is
designed to intermittently capture essential information via
pointer displacement, facilitating swift routing decisions that
conserve satellite resources.

The workflow of XupfPI encompasses interactions between
the kernel and user spaces. Given these considerations, XupfPI
is segmented into two subsystems: the control subsystem of the
user space and the data acceleration subsystem of the kernel
space. The framework of XupfPI is shown in Fig.10.

The user space control subsystem in this design intercepts
packets at the UPF network interface ingress, utilizing the



Fig. 10: Overview of XupfPI architecture.

mapping capabilities of the extended Berkeley Packet Filter
(eBPF) to organize forwarding data within the kernel’s for-
warding and flow tables. This subsystem is structured around
two main components: the PFCP session controller and the
eBPF Program controller. These components are responsible
for the lifecycle management of PFCP sessions and eBPF
programs, respectively. PFCP session management encom-
passes several steps: upon a data packet’s arrival at the user
plane, XupfPI initially seeks a corresponding PFCP session
via the PDU session (F-TEID). Upon successful identification,
XupfPI evaluates all related Packet Detection Rules (PDRs),
selecting the one with the highest priority. Then XupfPI iden-
tifies the Forwarding Action Rules (FARs), Buffering Action
Rules (BARs), QoS Enforcement Rules (QERs), and Usage
Reporting Rules (URRs) associated with the selected PDR.
Subsequently, XupfPI applies the identified PDR association
rule to the packet, forwarding it according to the specified
FAR. eBPF lifecycle management involves the invocation of
eBPF Programs during the PFCP session management to
address specific events. Before calling the eBPF program,
the bytecode of the program needs to be dynamically loaded
into the kernel through the libbpf library. eBPF programs
loaded into the kernel can access eBPF Maps, which store
information about PDRs and FARs and are used to share data
between kernel space and user space. Upon receiving network
data structures, the PFCP session controller utilizes the libbpf
library to decode these structures into eBPF map entries,
subsequently updating the eBPF maps with these entries. This
process enables the kernel’s eBPF program to access the latest
data, performing operations based on the PDRs and FARs.

The data acceleration subsystem in kernel space is in-
tricately designed for efficient parsing of GPRS Tunneling
Protocol (GTP) headers in UE packets. This enables the
subsystem to adeptly process and route packets based on pre-
defined forwarding rules, which utilize the Tunnel Endpoint
Identifier (TEID) along with the packet’s source and destina-
tion IP addresses for rapid decision-making. The subsystem
is structured into three principal components: the Parser, the

Classifier, and the Forwarder. The parser’s role is to ana-
lyze incoming data packets, extracting essential information
for further processing. Following this, the Classifier consults
eBPF Maps to identify the PDR corresponding to the packet.
Upon successful identification, the packet is relayed to the
Forwarder. The Forwarder then utilizes the PDR data to locate
the FAR, executing the necessary packet forwarding decision.
Since NAT is a function provided by the Linux kernel network
stack, and some data packets processed by XupfPI will cross
the kernel network stack, we also implemented an additional
external proxy forwarding function in Forwarder to translate
private IP addresses into public ones, facilitating communica-
tion between internal network hosts and the external network.

B. Implementation

XupfPI is built on the open-source 5G core project Free5GC
(version 3.3.0) and is deployed on Raspberry Pi which has
important applications in LEO satellites [13]. However, limited
by its hardware, the XupfPI was unable to reach its full
potential. The system is mainly implemented in Go, but
XupfPI is specially written in C. The XupfPI program can
be roughly divided into the following three parts: parsing
received data packets, reconstructing the data packets through
address conversion, and forwarding the data packet according
to the rules. Data packets are made up of IP, UDP, and GTP
packets. Upon reception, XupfPI initially deconstructs a data
packet into an IP packet, subsequently parsing this into a
UDP packet. Only when the UDP port corresponds to 2152
is the packet identified as a GTP packet, requiring specialized
processing. In contrast, packets not matching this criterion are
processed via the Linux kernel network protocol stack. XupfPI
further parses the data packet with port number 2152 into
a GTP packet and obtains the original message information.
Since we want to access the Data Network, the data packets
processed by XupfPI do not pass through the Linux kernel
network protocol stack, so the NAT function is not available.
In order to have the ability to access the public network, we
reimplemented the function and reconstructed the data packets.
Ultimately, XupfPI forwards the restructured packet following
the determined FAR.

VI. EVALUATION & ANALYSIS

In this section, we conducted a series of experiments to
evaluate the performance of XupfPI under high-load scenarios,
measuring its superiority in packet loss and temperature,
among others, compared to Vanilla UPF which was inapplica-
ble at 60Mbps bandwidth (refer to Section IV-B2) using Iperf.

A. Experiment Setup

As illustrated in Fig.3, consistent with previous experiments,
the testing platform was similarly divided into four segments.
Among these, the UPF segment, earmarked for critical testing,
employed either XupfPI or Vanilla-UPF deployed on Rasp-
berry Pi 4Bs with 8GiB RAM. The remaining components
maintained alignment with the previous descriptions: UERAN-
SIM and Free5GC control plane were individually deployed



Fig. 11: Comparison of
packet loss rate.

Fig. 12: Comparison of re-
source.

on two Intel NUC 11th Gen Intel(R) Core(TM) i5-1135G7 @
2.40GHz servers, running on Ubuntu 22.04 with kernel 5.15.0-
67-generic. The DN segment utilized the same hardware as the
UPF segment.

B. Performance

We initially verified the packet loss rates of XupfPI and
Vanilla UPF based on Free5GC under scenarios of high system
load, by controlling a UE with Iperf to continuously transmit
at a bandwidth of 60Mbps through the UPF to the DN. As
depicted in Fig.11, XupfPI demonstrates a notable outper-
formance in packet loss rates, achieving a qualitative leap
in service availability time. This advantage probably stems
from the kernel-level packet processing techniques. Packets are
handled prior to stack entry, thereby avoiding the necessity of
constructing a sk buff (used to manage and control receiving
or sending data packets) structure that heavily consumes Linux
memory. Moreover, circumventing the complex Linux network
stack directly leads to reduced data packet processing times
and eliminates the risk of processing delays.

As can be seen in Fig.12, there is a big difference in
CPU overhead and temperature changes between Vanilla UPF
and XupfPI under the same data transmission bandwidth of
60Mbps. Vanilla UPF implemented atop the kernel protocol
stack, encounters high-frequency kernel interrupts when pro-
cessing high-concurrency streaming data packets. This will
lead to recurrent switching between user mode and kernel
mode, incurring additional context switching overheads. Such
overheads not only result in increased CPU usage and tem-
perature rise, but also become more pronounced in satellite
core network scenarios due to the extreme thermal conditions.
Consequently, this exacerbates system strain, leading to a
vicious cycle of escalating temperatures and overhead.

VII. CONCLUSIONS

User Plane Function (UPF) is a key facilitating component
in core network and a critical enabling component in inte-
gration of communication and computation for future space
computing power network (Space-CPN). In this paper, we
first present the first-of-its-kind measurement study on satellite
UPF and identify critical factors that affect the performance.
The results show that temperature and frequent CPU interrup-
tions lead to performance degradation. To address such issues,
we designed and implemented XupfPI, targeting spaceborne
low-power devices, achieving fast packet processing. The ex-
perimental results compellingly demonstrate that our XupfPI,

significantly reduces the packet loss rate and enhances network
service quality.

ACKNOWLEDGEMENTS

This research was supported by the Science and Technol-
ogy Foundation of Shenzhen (No. KJZD20230928112759002)
and the National Natural Science Foundation of China (No.
62372061 and 62032003). Xiao Ma is the corresponding
author of this work.

REFERENCES

[1] Ghufran Baig, Jian He, Mubashir Adnan Qureshi, Lili Qiu, Guohai
Chen, Peng Chen, and Yinliang Hu. Jigsaw: Robust live 4k video
streaming. In MobiCom, pages 1–16, 2019.

[2] Chun-Ying Huang, Kuan-Ta Chen, De-Yu Chen, Hwai-Jung Hsu, and
Cheng-Hsin Hsu. Gaminganywhere: The first open source cloud gaming
system. TOMM, 10(1s):1–25, 2014.

[3] Stefan Rommer, Peter Hedman, Magnus Olsson, Lars Frid, Shabnam
Sultana, and Catherine Mulligan. 5G Core Networks: Powering Digi-
talization. Academic Press, 2019.

[4] 3GPP. TR38.811: Study on New Radio (NR) to support non-terrestrial
networks, 2020.

[5] 3GPP. TR38.821: Solutions for NR to support non-terrestrial networks
(NTN), 2020.

[6] 3GPP. TS23.501: System architecture for the 5G System (5GS), 2020.
[7] Expanding network capability on the ISS with a 5G core prototype.

https://www.hpe.com/us/en/newsroom/press-release/2022/04/hewlett-p
ackard-enterprise-drives-innovation-at-the-extreme-edge-on-the-inter
national-space-station-with-24-completed-experiments.html, 2022.

[8] 5G-Advanced core experiments in the Baoyun LEO Satellite by China
Mobile. https://www.c114.com.cn/news/118/a1183668.html, 2021.

[9] AST SpaceMobile. https://ast-science.com/spacemobile/, 2021.
[10] Ruolin Xing, Xiao Ma, Ao Zhou, Schahram Dustdar, and Shangguang

Wang. From earth to space: A first deployment of 5g core network on
satellite. China Communications, 20(4):315–325, 2023.

[11] Armir Bujari, Michele Luglio, Claudio E Palazzi, Mattia Quadrini,
Cesare Roseti, and Francesco Zampognaro. A virtual pep for web
optimization over a satellite-terrestrial backhaul. IEEE Communications
Magazine, 58(10):42–48, 2020.

[12] Yuanjie Li, Hewu Li, Wei Liu, Lixin Liu, Yimei Chen, Jianping Wu,
Qian Wu, Jun Liu, and Zeqi Lai. A case for stateless mobile core
network functions in space. In SIGCOMM, pages 298–313, 2022.

[13] Ruolin Xing, Mengwei Xu, Ao Zhou, Qing Li, Yiran Zhang, Feng Qian,
and Shangguang Wang. Deciphering the enigma of satellite computing
with cots devices: Measurement and analysis. arXiv, 2024.

[14] Sami Ma, Yi Ching Chou, Haoyuan Zhao, Long Chen, Xiaoqiang Ma,
and Jiangchuan Liu. Network characteristics of leo satellite constella-
tions: A starlink-based measurement from end users. In INFOCOM,
pages 1–10, 2023.

[15] Daniel Perdices, Gianluca Perna, Martino Trevisan, Danilo Giordano,
and Marco Mellia. When satellite is all you have: watching the internet
from 550 ms. In IMC, pages 137–150, 2022.

[16] Abhik Bose, Shailendra Kirtikar, Shivaji Chirumamilla, Rinku Shah,
and Mythili Vutukuru. Accelupf: Accelerating the 5g user plane using
programmable hardware. In SOSR, pages 1–15, 2022.

[17] Madhura Adeppady, Mohit Kumar Singh, and Bheemarjuna Reddy
Tamma. Onvm-5g: a framework for realization of 5g core in a box
using dpdk. CSI Transactions on ICT, 8(1):77–84, 2020.

[18] Haoran Zhang, Zikang Chen, and Yang Yuan. High-performance upf
design based on dpdk. In ICCT, pages 349–354, 2021.

[19] Jianer Zhou, Zengxie Ma, Weijian Tu, Xinyi Qiu, Jingpu Duan, Zhenyu
Li, Qing Li, Xinyi Zhang, and Weichao Li. Cable: A framework for
accelerating 5g upf based on ebpf. Computer Networks, 222:109535,
2023.

[20] Vivek Jain, Hao-Tse Chu, Shixiong Qi, Chia-An Lee, Hung-Cheng
Chang, Cheng-Ying Hsieh, KK Ramakrishnan, and Jyh-Cheng Chen.
L25gc: A low latency 5g core network based on high-performance nfv
platforms. In SIGCOMM, pages 143–157, 2022.

[21] UERANSIM: Open source 5G UE and RAN (gNodeB) implementation.
https://github.com/aligungr/UERANSIM.

77424
Highlight

77424
Highlight


